Advancing Information Transformation in the Manufacturing Industry

Advancing Information Transformation in the Manufacturing Industry

Advancing Information Transformation in the Manufacturing Industry

Manufacturers depend on information and analytics to help them deal with the complexity caused by global operations, value chains and market. Most recognize that there is tremendous opportunity to use, analyze and apply information all across the business. However, they need to do a better job capitalizing on the information that is and will become available to them and to embed intelligence in how they manage their operations and deliver products and services.

Manufacturers must evolve from a classic data management approach to one that leverages information and knowledge as critical business assets. Existing quality, data governance and data management practices are still essential. But these practices must evolve to meet the requirements both of the legacy environment and of the digital business under construction.

Information transformation is a huge and critical challenge for many. IDC estimates that by 2020, the digital universe will reach 44ZB, or 44 trillion gigabytes, of data—a tenfold increase over that in 2013, with 40% growth per year. To make matters worse, IDC estimates that 22% of the information in the digital universe was usable for analysis in 2013; however, less than 5% of that usable information was analyzed. These numbers need to change for manufacturers.

Read Also:
How to Represent Data with Intelligent Use of the Coordinate System

Although most manufacturers have aggregated and analyzed much of their transactional data, many see value in other data types and sources, such as machine- or sensor-generated data, GPS data, text, rich media (image, voice and video), and consumer sentiment from e-commerce sites and social networks.

Manufacturers need their employees to do their jobs more efficiently and productively—as they manage operations, design products and develop new intellectual property (IP)—from anywhere in the world. Knowledge is the basis for augmenting and automating work throughout the company and from the experienced to the new generation worker to yield further productivity benefits.

Knowledge workers—those employees who primarily rely on data and information to do their work—currently represent about 40% of the manufacturing workforce. And in large or geographically dispersed manufacturers, information is often the glue that keeps the company working as one. Yet manufacturers often struggle to provide unified information access systems with a “single point of access” to heterogeneous data sources or achieve what we call “truth in data.”

Despite all of the localized information analysis that takes place today within various lines of business or applications, manufacturers are still not achieving the success they would like to in applying that information, whether because of data quality problems, data disconnects, the age or timeliness of the data, or even the availability of data.

Read Also:
Big Data Processing 101: The What, Why, and How

Some of the use cases that are currently receiving the most interest leverage sensor data, create new products and services, and change how manufacturers interact with their customers and their customers’ customers. But most of these new use cases require the integration of enterprise data sources and external data sources (such as weather and traffic). This is especially true for two use cases that are of high interest to many manufacturers:

• Predictive asset maintenance uses sensor data on production equipment, integrated with enterprise asset management systems to drive maintenance and with inventory data to ensure an adequate supply of necessary service parts.

• New service delivery via connected products uses sensor data in products in use by customers to monitor real-time product performance data for maintenance, to confirm products are under warranty, or to deliver consumables. Integration bridges sensor data, warranty systems, CRM, ERP and supply chain applications.

Eventually, we will also find manufacturers selling their data as a product, and although we don't fully know how this market will develop, it builds on the fact that “knowledge is power.

Read Also:
Introduction to streaming data platforms

 



HR & Workforce Analytics Summit 2017 San Francisco

19
Jun
2017
HR & Workforce Analytics Summit 2017 San Francisco

$200 off with code DATA200

Read Also:
DataOps – It’s a Secret

M.I.E. SUMMIT BERLIN 2017

20
Jun
2017
M.I.E. SUMMIT BERLIN 2017

15% off with code 7databe

Read Also:
Visualization Takes Open Data to the Next Level

Sentiment Analysis Symposium

27
Jun
2017
Sentiment Analysis Symposium

15% off with code 7WDATA

Read Also:
3 Tips for Getting the Most Out of Your Data Science Team

Data Analytics and Behavioural Science Applied to Retail and Consumer Markets

28
Jun
2017
Data Analytics and Behavioural Science Applied to Retail and Consumer Markets

15% off with code 7WDATA

Read Also:
DataOps – It’s a Secret

AI, Machine Learning and Sentiment Analysis Applied to Finance

28
Jun
2017
AI, Machine Learning and Sentiment Analysis Applied to Finance

15% off with code 7WDATA

Read Also:
Big Data (or how to make Business Intelligence keep up with the new times)

Leave a Reply

Your email address will not be published. Required fields are marked *