Advancing Information Transformation in the Manufacturing Industry

Advancing Information Transformation in the Manufacturing Industry

Advancing Information Transformation in the Manufacturing Industry

Manufacturers depend on information and analytics to help them deal with the complexity caused by global operations, value chains and market. Most recognize that there is tremendous opportunity to use, analyze and apply information all across the business. However, they need to do a better job capitalizing on the information that is and will become available to them and to embed intelligence in how they manage their operations and deliver products and services.

Manufacturers must evolve from a classic data management approach to one that leverages information and knowledge as critical business assets. Existing quality, data governance and data management practices are still essential. But these practices must evolve to meet the requirements both of the legacy environment and of the digital business under construction.

Information transformation is a huge and critical challenge for many. IDC estimates that by 2020, the digital universe will reach 44ZB, or 44 trillion gigabytes, of data—a tenfold increase over that in 2013, with 40% growth per year. To make matters worse, IDC estimates that 22% of the information in the digital universe was usable for analysis in 2013; however, less than 5% of that usable information was analyzed. These numbers need to change for manufacturers.

Read Also:
How big data will transform the ways people travel

Although most manufacturers have aggregated and analyzed much of their transactional data, many see value in other data types and sources, such as machine- or sensor-generated data, GPS data, text, rich media (image, voice and video), and consumer sentiment from e-commerce sites and social networks.

Manufacturers need their employees to do their jobs more efficiently and productively—as they manage operations, design products and develop new intellectual property (IP)—from anywhere in the world. Knowledge is the basis for augmenting and automating work throughout the company and from the experienced to the new generation worker to yield further productivity benefits.

Knowledge workers—those employees who primarily rely on data and information to do their work—currently represent about 40% of the manufacturing workforce. And in large or geographically dispersed manufacturers, information is often the glue that keeps the company working as one. Yet manufacturers often struggle to provide unified information access systems with a “single point of access” to heterogeneous data sources or achieve what we call “truth in data.”

Read Also:
5 Steps to embracing digital disruption in the connected economy

Despite all of the localized information analysis that takes place today within various lines of business or applications, manufacturers are still not achieving the success they would like to in applying that information, whether because of data quality problems, data disconnects, the age or timeliness of the data, or even the availability of data.

Some of the use cases that are currently receiving the most interest leverage sensor data, create new products and services, and change how manufacturers interact with their customers and their customers’ customers. But most of these new use cases require the integration of enterprise data sources and external data sources (such as weather and traffic). This is especially true for two use cases that are of high interest to many manufacturers:

• Predictive asset maintenance uses sensor data on production equipment, integrated with enterprise asset management systems to drive maintenance and with inventory data to ensure an adequate supply of necessary service parts.

• New service delivery via connected products uses sensor data in products in use by customers to monitor real-time product performance data for maintenance, to confirm products are under warranty, or to deliver consumables. Integration bridges sensor data, warranty systems, CRM, ERP and supply chain applications.

Read Also:
5 questions to ask before starting a Big Data project

Eventually, we will also find manufacturers selling their data as a product, and although we don't fully know how this market will develop, it builds on the fact that “knowledge is power.

 



Data Science Congress 2017

5
Jun
2017
Data Science Congress 2017

20% off with code 7wdata_DSC2017

Read Also:
3 Aspects of a Data Governance Benchmark

AI Paris

6
Jun
2017
AI Paris

20% off with code AIP17-7WDATA-20

Read Also:
Can big data catch the bad guys?

Chief Data Officer Summit San Francisco

7
Jun
2017
Chief Data Officer Summit San Francisco

$200 off with code DATA200

Read Also:
Data Analytics for CFOs: Why new-age Business Intelligence systems are better than traditional MIS

Customer Analytics Innovation Summit Chicago

7
Jun
2017
Customer Analytics Innovation Summit Chicago

$200 off with code DATA200

Read Also:
4 Ways Data-First Competitors Are Killing You

Big Data and Analytics Marketing Summit London

12
Jun
2017
Big Data and Analytics Marketing Summit London

$200 off with code DATA200

Read Also:
3 Aspects of a Data Governance Benchmark

Leave a Reply

Your email address will not be published. Required fields are marked *