Big Data in the Magic Kingdom: Disney’s Secret to Customer Experience Success

Big Data in the Magic Kingdom: Disney’s Secret to Customer Experience Success

Big Data in the Magic Kingdom: Disney’s Secret to Customer Experience Success

What’s the big data secret behind Disney’s magical customer experience? Or any other retailer relationship, for that matter?

Whether shopping for clothes, sniffing-out cheaper utilities, or strapping on apersonalised bracelet for a visit to the Magic Kingdom, we expect the earth in return for our custom.

And why not? Shaped by new technologies and channels, this complex marketplace no longer allows commerce to pay lip service to customers. It forces retailers to lionise them. To put customers slap, bang, at the heart of operations.

No wonder browsers are becoming more picky about the buying process and the brands they choose to buy from, rather than the actual products and services themselves.

These days, customer loyalty is hard-won – earned and nurtured by caring for each individual, personally. In other words, by optimising the customer experience. And for businesses with a traditional silo-view of channels, products, and services, this presents a real challenge. To remain competitive, they have to grow out of the habit of concentrating on single moments-in-time and develop an end-to-end understanding of customer interaction.

Read Also:
Understanding data access in a complex world

The traditional means of measuring customer satisfaction – asking customers to provide feedback after a single transaction – is misleading. Although a customer might have had a successful conversation with a call-centre agent, his or her journey to that call may well have been confusing and stressful. However, by combining attitudinal data (NPS scores from customer satisfaction surveys and complaints) with behavioural data from multi-channel journeys, companies uncover the real story complete with negative, cross-channel customer experiences.

And it pays off in spades. RecentMcKinsey research showed that optimising customer journeys can increase customer satisfaction by 20 percent, lower the cost of serving customers by 20 percent and, most importantly, boost revenue by as much as 15 percent.

Mapping the journey, understanding the number of touch points plus the length and time between interactions as well as assessing the outcomes, provides a more insightful view of the customer experience. It allows businesses to identify areas that need improvement and optimisation, and to work out the best time to engage individual customers with the most timely and appropriate messages, too.

Read Also:
4 Biggest Predictive Analytics Mistakes with Marketing Automation

Previously, analysis relied on mapping customer interactions to a linear journey (e.g. AIDA – attention, interest, desire and action). However, today’s consumers leap from stage-to-stage and channel-to-channel, making it impossible to map a linear decision-making process.

Consequently, the future of journey analysis involves moving away from a business-only view of journeys, towards analysing the actual routes, paths, and processes followed by the customer. This makes it easier to pick up on unexpected switches between channels, friction or failure within a journey, and leakage.

A predicted 10-minute process for obtaining a new credit card can actually take weeks – from Googling providers, booking appointments, visiting branches and completing applications, through waiting for back-end processing to run its course and mail-out, to online activation.

During such a complex journey, the customer has many opportunities to drop out (e.g.

 



Data Science Congress 2017

5
Jun
2017
Data Science Congress 2017

20% off with code 7wdata_DSC2017

Read Also:
How manufacturers make the most of machine data
Read Also:
Predictive Analytics, Healthcare IoT Markets See Major Growth

AI Paris

6
Jun
2017
AI Paris

20% off with code AIP17-7WDATA-20

Read Also:
How manufacturers make the most of machine data

Chief Data Officer Summit San Francisco

7
Jun
2017
Chief Data Officer Summit San Francisco

$200 off with code DATA200

Read Also:
Why Machine Learning Can Improve Customer Service

Customer Analytics Innovation Summit Chicago

7
Jun
2017
Customer Analytics Innovation Summit Chicago

$200 off with code DATA200

Read Also:
Big Data In Investing: The Quants Have Taken Over

HR & Workforce Analytics Innovation Summit 2017 London

12
Jun
2017
HR & Workforce Analytics Innovation Summit 2017 London

$200 off with code DATA200

Read Also:
Smart Data Is a Bigger Priority Than Big Data for FinTech Companies

Leave a Reply

Your email address will not be published. Required fields are marked *