Machine learning in markets: When intelligent algorithms start spoofing each other regulation becomes a science

Machine learning in markets: When intelligent algorithms start spoofing each other regulation becomes a science

Machine learning in markets: When intelligent algorithms start spoofing each other regulation becomes a science

What's to stop intelligent algorithms, programmed to make a profit, from learning to collude with one another in ways which bend market rules? Such a scenario would require regulatory oversight from the very cutting edge of computer science.

The idea of artificial intelligence manipulating outcomes in the real world and then exploiting these on the markets is bestseller material. But there's fascinating scope for this to actually happen as computing power increases and algorithms get smarter.

Someone who has thought about this a lot is Anthony Amicangioli, CEO and founder of Hyannis Port Research. His company developed Riskbot which has been described as "a supercomputer that watches supercomputers"; a literal box that sits between the trading firm and the exchange to prevent erroneous trades going through to market.

Amicangioli explains that the detection of excessive spoofing (placing orders to create the appearance of interest that the market is going to move in one direction or another) using artificial intelligence (AI) could potentially have some bewildering consequences.

Read Also:
Why quality data is critical for small business

He told IBTimes: "There are a few behaviours that are really interesting to consider. With machine learning (ML), you write code that acts on data. I distinguish advanced ML (from things like big data) where one begins to treat code in a manner similar to data; creating code that can change itself through intelligent morphing.

"Detecting spoofing is relatively easy. I'm looking for someone who sends a bunch of deceptive orders on one side of a given stock's book, abruptly pulls back, and benefits from trading the opposite side of the book shortly thereafter.

"But what about the case when an AI algorithm modifies itself so that rather than benefit for itself, maybe it gets even smarter than that and begins to collude with another trading entity with a similar algorithm.

"So I spoof but you benefit - we sort of have this unholy implicit contract to do the same in reverse. If that sort of hypothetical scenario is possible, then a lot of fascinating regulatory questions arise."

Read Also:
13 Forecasts on Artificial Intelligence

The regulator would have to adopt a scientifically rigorous approach to spot this kind of activity, notes Amicangioli. And then how would they deal with it?

"Is it possible that AI could be written where the author of said code is not intending to spoof or layer but an algorithm somehow inadvertently does? Or maybe even more complexly, begins to collude with other algorithms."

Amicangioli said the probability going forward that there could be unintended AI outcomes is high. From a regulatory perspective, the net behaviour as analysed, could be deemed to be bad, but the author could be deemed to be completely blameless.

Much was made of the fact that market regulators were eons behind the complexity that precipitated the 2010 flash crash. So what can regulators do to evolve in a ML markets environment?

"I don't believe the government or regulators could ever just hire teams of scientists and compete. These hypothetical problems I have outlined may be around the corner; I don't think they exist today; I could be wrong.

Read Also:
Most Industries Are Nowhere Close to Realizing the Potential of Analytics

 



Chief Analytics Officer Europe

25
Apr
2017
Chief Analytics Officer Europe

15% off with code 7WDCAO17

Read Also:
How Artificial Intelligence Can Improve Automated Customer Care

Chief Analytics Officer Spring 2017

2
May
2017
Chief Analytics Officer Spring 2017

15% off with code MP15

Read Also:
Most Industries Are Nowhere Close to Realizing the Potential of Analytics

Big Data and Analytics for Healthcare Philadelphia

17
May
2017
Big Data and Analytics for Healthcare Philadelphia

$200 off with code DATA200

Read Also:
How Big Data Can Help Unleash Your Print Fleet

SMX London

23
May
2017
SMX London

10% off with code 7WDATASMX

Read Also:
The 3 Reasons Why Companies Should Use Data Intensive Computing

Data Science Congress 2017

5
Jun
2017
Data Science Congress 2017

20% off with code 7wdata_DSC2017

Read Also:
7 Tips for Transitioning Data Insights into Business as Usual

Leave a Reply

Your email address will not be published. Required fields are marked *