Apply good data science to outthink competitors’ marketing

Apply good data science to outthink competitors’ marketing

Apply good data science to outthink competitors’ marketing

Marketing departments quickly adopted big data analytics and obtained good results. Many companies—such as Amazon and its noteworthy and effective personalized marketing powered by big data analytics—use big data–based marketing analytics to outthink their competitors. However, according to a recent survey by Kantar TNS, one of the largest research firms in Europe, delivering meaningful personalized marketing is still a big challenge for organizations.

Nevertheless, utilizing big data definitely is the first step for smart marketing. Sometimes, even a little insight such as the best timing for sending emails exposed with big data analytics can lead to some significant improvements. And, having all marketing being data driven is always a good thing, but it can also be dangerous if only incomplete data and some simple analyses are used. Incomplete data and simple analyses can create biased estimations or even lead to disasters. Many bad examples were identified in 2016 as the year of bad analytics by some people, including a FICO partner.

Read Also:
Crowdsourcing Data Governance

To go beyond incomplete data and questionable analyses, at least, three steps of good data science work need to be performed. First, we need to create more complete data. Big data does not equal complete data. Data completeness helps us, at least, to avoid misrepresentation and model misspecification biases. The marketing data set from the past for any company is always a good place to start, but we need to merge it with other data sources. We need to merge the readily available internal data with some external data sets such as census data and open data, which are publicly available and easily accessible. With time and location data added in, we then need to go further by merging weather data and social media data, and applying text mining to generate new features.

Second, with more complete data in hand, we can then apply modern data analytics to derive causal structures from our data.

Read Also:
The Dangers With Dehumanizing Big Data

 



HR & Workforce Analytics Summit 2017 San Francisco

19
Jun
2017
HR & Workforce Analytics Summit 2017 San Francisco

$200 off with code DATA200

Read Also:
Workday Buys Big Data Specialist Platfora

M.I.E. SUMMIT BERLIN 2017

20
Jun
2017
M.I.E. SUMMIT BERLIN 2017

15% off with code 7databe

Read Also:
Big Data, Open Data and the Need for Data Transparency (Industry Perspective)

Sentiment Analysis Symposium

27
Jun
2017
Sentiment Analysis Symposium

15% off with code 7WDATA

Read Also:
Big Data, Open Data and the Need for Data Transparency (Industry Perspective)

Data Analytics and Behavioural Science Applied to Retail and Consumer Markets

28
Jun
2017
Data Analytics and Behavioural Science Applied to Retail and Consumer Markets

15% off with code 7WDATA

Read Also:
Hypothesis driven thinking in data science

AI, Machine Learning and Sentiment Analysis Applied to Finance

28
Jun
2017
AI, Machine Learning and Sentiment Analysis Applied to Finance

15% off with code 7WDATA

Read Also:
Workday Buys Big Data Specialist Platfora

Leave a Reply

Your email address will not be published. Required fields are marked *