Machine Learning Poised to Impact Business Analytics in 2017

Machine Learning Poised to Impact Business Analytics in 2017

Machine Learning Poised to Impact Business Analytics in 2017
We may be years away from the “AI-enabled Coworker,” but the first implementations of machine-learning capabilities are finding their way into the everyday data-analysis tools used by businesses of all types. Cognitive assistance promises to reshape business processes, but only if app development and deployment tools are adapted to support machine learning.

While it has become fashionable to hypeAIas the next game-changing technology promising to have an impact greater than either mobile or cloud, the reality is that machine learning will be a long time coming to everyday business analytics. As with any sea change, cognition is likely to sneak its way into applications and processes in drips and drops. It looks like 2017 could be the year many businesses get their first hands-on experience with cognitive-learning business apps.

For example, IBM’s Watson elicited plenty of “oohs” and “aahs” when it beat the Jeopardy champions, but the AI-based platform drew praise of another sort with the introduction of business solutions at the recentWorld of Watson event, as NewsFactor  pointed out . Watson’s professional series applies cognitive learning to the analysis of large data sets; it works in tandem with enhancements to IBM’s DB2 for transactional processing in analytical databases.

Read Also:
Converging IoT, Cloud, and Big Data Technologies to Revolutionize the World

IBM may have gotten a bit of a jump on the field of vendors racing to bring machine-learning capabilities to business processes, but the contest has just begun. The real winners are line managers, who stand to benefit the most from AI-enabled business applications.

The three cornerstones of cognitive technology aremachine learning, natural-language processing (NLP), andspeech recognition. In  an article on Open Source For U, systems architect  Sanghamitra Mitra writes that machine cognition is intended to imitate human reasoning to automate judgment-based components of business processes. The goal is to augment human activities to give people more time to focus on the really tough problems, like where to hold the holiday party.

The primary obstacle to implementation of cognitive systems is dealing with their inherent complexity. This fact is reflected in the cost of packaged machine-learning systems sold by vendors, as well as in the extensive infrastructure needed to support the systems. Several open-source alternatives have surfaced, providing enterprises with a quick, simple, and inexpensive way to dip their toe in the cognitive-computing water.

Read Also:
Big Data Processing 101: The What, Why, and How

There seems to be an inverse relationship between how much a new technology is hyped, and how well the technology is understood by would-be practitioners. In an attempt to remove some of the question marks surrounding machine learning and encourage adoption of the technology, Amazon, Facebook, Google, IBM, and Microsoft have joined to create the Partnership in AI program.

Read Full Story…

 

Leave a Reply

Your email address will not be published. Required fields are marked *