Market Anomalies And Data Mining: Some Pretty Tough Love From Data

Market Anomalies And Data Mining: Some Pretty Tough Love From Data

Market Anomalies And Data Mining: Some Pretty Tough Love From Data

Investment anomalies (or in other words, efficacy of exogenous factors in determining abnormal returns to investment) are a matter of puzzle for traditional investment analysis. In basic terms, we normally think about the investment as an undertaking that offers no "free lunch" - if markets are liquid, deep, and once we control for risk factors, taxes and transaction costs, an average investor cannot expect to earn an above-market return. Put differently, there should be no ways to systematically (luck omitting) beat the market.

Anomalies represent the case where some factors do, in fact, generate such abnormal returns. There is a range of classic anomalies, the most commonly known ones being Small Firms Outperform, January Effect, Low Book Value, Underdogs or Discounted Assets or Dogs of the Dow, Reversals, Days of the Week, etc. In fact, there is an entire analytics industry built around markets that does one thing: mine for factors that can give investors a leg up on competition, or find anomalies.

Read Also:
Two critical data challenges and how to overcome them

One recent paper have identified a list of some 314 factors that were found - in the literature - to generate abnormal returns. As noted by John Cochrane, "We thought 100% of the cross-sectional variation in expected returns came from the CAPM, now we think that's about zero and a zoo of new factors describes the cross section."

A recent paper published by NBER and authored by Juhani Linnainmaa and Michael Roberts (see link below) effectively tests Cochrane's proposition. To do this, the authors "examine cross-sectional anomalies in stock returns using hand-collected accounting data extending back to the start of the 20th century. Specifically, we investigate three potential explanations for these anomalies: unmodeled risk, mispricing, and data-snooping." In other words, the authors look into three reasons as to why anomalies can exist:

The authors argue that "each of these explanations generate different testable implications across three eras encompassed by our data: (1) pre-sample data existing before the discovery of the anomaly, (2) in-sample data used to identify the anomaly, and (3) post-sample data accumulating after identification of the anomaly."

Read Also:
The Future Of Data In Banking

In their first set of tests, the authors focus on profitability and investment factors, because prior literature shown that "these factors, in concert with the market and size factors, capture much of the cross-sectional variation in stock returns."

Finding 1: The authors "find no statistically reliable premiums on the profitability and investment factors in the pre-1963 sample period.

 



HR & Workforce Analytics Summit 2017 San Francisco

19
Jun
2017
HR & Workforce Analytics Summit 2017 San Francisco

$200 off with code DATA200

Read Also:
The Future Of Data In Banking

M.I.E. SUMMIT BERLIN 2017

20
Jun
2017
M.I.E. SUMMIT BERLIN 2017

15% off with code 7databe

Read Also:
“Get Social” with Enterprise Data to Speed and Improve Analytics Outcomes

Sentiment Analysis Symposium

27
Jun
2017
Sentiment Analysis Symposium

15% off with code 7WDATA

Read Also:
Talent Analytics are Business Analytics

AI, Machine Learning and Sentiment Analysis Applied to Finance

28
Jun
2017
AI, Machine Learning and Sentiment Analysis Applied to Finance

15% off with code 7WDATA

Read Also:
Finding Hidden Customer Behavior Patterns Using Big Data Analytics
Read Also:
Welcome to the post-cloud future

Data Analytics and Behavioural Science Applied to Retail and Consumer Markets

28
Jun
2017
Data Analytics and Behavioural Science Applied to Retail and Consumer Markets

15% off with code 7WDATA

Read Also:
Top 10 Considerations for an Optimal Data Science Strategy

Leave a Reply

Your email address will not be published. Required fields are marked *