Push Your Analytics Out to Customers

Push Your Analytics Out to Customers

Push Your Analytics Out to Customers

Analytics and big data have penetrated most large organizations by now, and are helping to improve many internal decisions. But they can also have a major impact on the decisions of customers or citizens. This applies not only to decisions about what products to buy, but also to decisions about safety and crime.

I’ve previously written here about the ever-advancing efforts of the New York Police Department in using analytics, which began over a decade ago. The NYPD’s CompStat systems were intended to inform internal decisions about where to focus resources and mobilize personnel to deter and arrest criminals.

But there are other analytical frontiers in the battle against crime, and they’re being adopted all over the world—including in Rio de Janeiro, which has a substantial need for them (as does Brazil in general, with roughly 60,000 homicides a year— more than any other country on the planet). One key aspect of the approach in Rio involves pushing crime data out to citizens.

Read Also:
Real-Time Analytics Transforms Small Business Lending

You may recall the recent Summer Olympics in Rio, in which there was no highly visible crime (unless you count the run-in that the swimmer Ryan Lochte had with the police). But Rio has a long-term problem with crime, and the period before and during the Olympics saw a surge in it.

Robert Muggah, a Canadian political scientist and security expert who lives in Rio, has co-founded the nonprofit Igarapé Institute to work with the state police in Rio (and law enforcement agencies around the world). One of their latest projects involves the development of data-driven tools to help predict criminal activity. The institute’s efforts have not only helped the Rio police monitor and solve crimes, but also have helped Cariocas (as Rio residents are known) figure out where they are most likely to avoid and encounter crime.

There are three key areas in which the Rio crime analytics work is setting a new direction. One is the use of advanced analytical methods to predict where and at what time crimes are likely to take place. A second is the application of analytics to analyze video, audio and location data from open source body cameras used by police officers. A third is the extension of predictive, causal and visual analytics outcomes to citizens. Similar steps could be adopted by businesses and organizations in many industries.

Read Also:
Leading the way in a Digital world

The predictive crime-fighting project was a partnership between Igarapé, the analytics vendor Via Science (I am an advisor to the Cambridge, MA-based company), and Rio’s Institute for Public Security (ISP). The work began in May 2016. The goal was to complete a predictive model and working app by the Olympics in August.

The partners very quickly built the crime-forecasting platform. They had a head start since the Igarapé Institute and its partners were simultaneously designing a new CompStat-style crime monitoring system for ISP. As a result, the team was able to draw on more than 14 million geo-located crime incidents stretching back to 2010.

Via Science uses machine learning to build “Bayesian networks” which are well suited to analyzing risks such as the safety and security issues in urban crime. A city like Rio de Janeiro has huge variation in the location and seasonality of crime. Therefore, building many local models rather than one global model has a tremendous accuracy advantage.

Read Also:
Open Data in Elections: Using Visualization and Graphical Discovery Analysis for Voter Education and Citizen Engagement

 



Read Also:
Why Python (IT Best Kept Secret Is Optimization)
Read Also:
How to Simplify Your BI in the Age of Data Complexity
Read Also:
Unlocking the Potential of Big Data in Population Health Management
Read Also:
Hortonworks enters joint initiative with Hewlett Packard Enterprise on Apache Spark enhancements

Leave a Reply

Your email address will not be published. Required fields are marked *