The Experience of Being a High-Performing Data Scientist

The Experience of Being a High-Performing Data Scientist

The Experience of Being a High-Performing Data Scientist

The experience of being a working data scientist is not necessarily what people think. A profession that some regard as “sexy” is, more often than not, a difficult job involving long hours, tight budgets, limited staff, daunting tasks, shifting requirements, endless meetings, and inflated expectations.

For the working data scientist, pain points may dominate the fabric of their experience. High-performance data scientists are those who automate, accelerate, and streamline the more tedious aspects of their jobs so that they can focus on finding data-driven insights. They will embrace any tool, platform, or approach that can help free up mental bandwidth for tasks that demand their creativity and judgment.

Data scientists do exceptionally complex work. Their productivity depends on having access to tools and practices they can use to streamline and accelerate the details in which they immerse themselves. As discussed in this recent IDG News article , the most fulfilling experiences of high-performance data scientists fall into three broad categories:

Read Also:
Top mistakes data scientists make when dealing with business people

Learning: This is the core value that data scientists deliver: learning what insights the data may reveal and what relevance they may have to the business problem at hand. According to a data scientist who was quoted in the article, “The first step is understanding the area -- I'll spend a lot of time searching the literature, reading, and trying to understand the problem." It also involves continual reassessment of the available and appropriate data-science computational approaches, algorithms, tools, platforms, and services necessary to tackle these problems effectively within constraints of time, budget, and staff.

Collaborating: This is the process under which data scientists engage with team members, colleagues, customers, and stakeholders. These activities—such as meetings and emails--often consume a substantial part of the data scientist’s day. It involves everything from identifying a client's business problem to assessing available data, tracking progress, discussing reports, sharing findings, explaining results, and putting the insights into an actionable business context.

Read Also:
Why Forrester Considers Adobe a Leader in Customer Analytics

productivity in this respect depends on the data scientists’ consultative skills: their ability to guide stakeholders through the process of identifying how data-driven insights can drive disruptive business outcomes. In the words of another data scientist quoted in the cited article, “A lot of people know they need help with data, but they don't know what they can do with it. It feels like being a magician, opening their minds to the possibilities.

That kind of exploration and geeking out is now my favorite part."
Creating: These are the nitty-gritty data science tasks such as discovering and preparing data, building and refining statistical models, visualizing and assessing findings, and developing data-driven applications. Productivity in this respect depends on the data scientist’s ability to leverage high-performance data mining, predictive analytics, machine learning, artificial intelligence, and cognitive solutions to automate these tasks.



HR & Workforce Analytics Summit 2017 San Francisco

19
Jun
2017
HR & Workforce Analytics Summit 2017 San Francisco

$200 off with code DATA200

Read Also:
Smart Data Plus Deep Reasoning Equals Business Value from Data Analysis
Read Also:
The Impact of Big Data and Analytics on Manufacturing Companies

M.I.E. SUMMIT BERLIN 2017

20
Jun
2017
M.I.E. SUMMIT BERLIN 2017

15% off with code 7databe

Read Also:
Smart Data Plus Deep Reasoning Equals Business Value from Data Analysis

Sentiment Analysis Symposium

27
Jun
2017
Sentiment Analysis Symposium

15% off with code 7WDATA

Read Also:
Top mistakes data scientists make when dealing with business people

Data Analytics and Behavioural Science Applied to Retail and Consumer Markets

28
Jun
2017
Data Analytics and Behavioural Science Applied to Retail and Consumer Markets

15% off with code 7WDATA

Read Also:
Raw intelligence: how big data flows work, and why they matter

AI, Machine Learning and Sentiment Analysis Applied to Finance

28
Jun
2017
AI, Machine Learning and Sentiment Analysis Applied to Finance

15% off with code 7WDATA

Read Also:
Unlocking Business Value with Open Source GIS

Leave a Reply

Your email address will not be published. Required fields are marked *