Data quality: Whose job is it? -

Data quality: Whose job is it? –

Data quality: Whose job is it? –

A recent survey suggests a significant disconnect in many organizations between the people creating data and those managing it.  

The IT department is usually held responsible for maintaining quality data, but those entering the data are not. “Data quality responsibility, for the most part, is not assigned to those directly engaged in its capture,” according to a survey by 451 Research on enterprise data quality.

When perceptions of the two groups -- those “accountable” and those “responsible” -- are misaligned, data quality suffers, the report said, and IT departments must employ multiple cleansing technologies to compensate, even as the volume of data grows.

Clean data is important for business. Sixty-five percent of respondents said that nearly half of business value can be lost to poor data quality, and 29 percent thought the consequences would be were worse.

Bad data comes from many sources, but the biggest cause is improper data entry by employees. Data migration or conversion projects come in second, followed by mixed entries by multiple users, changes to source systems, systems errors, data entry by customers and external data.

Read Also:
Computer Models Help Forecast Spread of Zika Virus

Problems caused by poor data quality are numerous. It forces staff to spend extra time reconciling data, contributes to extra costs, lost revenue delays in deploying a new systems and bad decision making.

Despite recognition of the problem, respondents’ confidence in their organization’s data quality management (DQM) practices is not high. Less than half (40 percent) of respondents to the survey were very confident that all the data sources required for their purposes had been aggregated prior to cleansing.

 



HR & Workforce Analytics Summit 2017 San Francisco

19
Jun
2017
HR & Workforce Analytics Summit 2017 San Francisco

$200 off with code DATA200

Read Also:
How Master Data Management Can Help Sales and Build Brand

M.I.E. SUMMIT BERLIN 2017

20
Jun
2017
M.I.E. SUMMIT BERLIN 2017

15% off with code 7databe

Read Also:
Hortonworks enters joint initiative with Hewlett Packard Enterprise on Apache Spark enhancements

Sentiment Analysis Symposium

27
Jun
2017
Sentiment Analysis Symposium

15% off with code 7WDATA

Read Also:
How Master Data Management Can Help Sales and Build Brand
Read Also:
2016: The year AI got creative

Data Analytics and Behavioural Science Applied to Retail and Consumer Markets

28
Jun
2017
Data Analytics and Behavioural Science Applied to Retail and Consumer Markets

15% off with code 7WDATA

Read Also:
Big Data for the Small Enterprise

AI, Machine Learning and Sentiment Analysis Applied to Finance

28
Jun
2017
AI, Machine Learning and Sentiment Analysis Applied to Finance

15% off with code 7WDATA

Read Also:
5 ways real-time will kill data quality

Leave a Reply

Your email address will not be published. Required fields are marked *