Use Big Data to Create Value for Customers

Use Big Data to Create Value for Customers, Not Just Target Them

Use Big Data to Create Value for Customers, Not Just Target Them

Big data holds out big promises for marketing. Notably, it pledges to answer two of the most vexing questions that have stymied marketers since they started selling: 1) who buys what when and at what price? and 2) can we link what consumers hear, read, and view to what they buy and consume?

Answering these makes marketing more efficient by improving targeting and by identifying and eliminating the famed half of the marketing budget that is wasted. To address these questions, marketers have trained their big-data telescopes at a single point: predicting each customer’s next transaction. In pursuit of this prize marketers strive to paint an ever more detailed portrait of each consumer, memorizing her media preferences, scrutinizing her shopping habits, and cataloging her interests, aspirations and desires. The result is a detailed, high-resolution close-up of each customer that reveals her next move.

But in the rush to uncover and target the next transaction, many industries are quickly coming up against a disquieting reality: Winning the next transaction eventually yields only short term tactical advantage, and it overlooks one big and inevitable outcome. When every competitor becomes equally good at predicting each customer’s next purchase, marketers will inevitably compete away their profits from that marginal transaction. This unwinnable short-term arms race ultimately leads to an equalization of competitors in the medium to long term. There is no sustainable competitive advantage in chasing the next buy.

Read Also:
The Difference Between Data and Analytics

This is not to say firms should never try to predict and capture the next purchase – but that they can only expect above-average returns from this activity in industries where competitors are lagging and where there are still some rewards to being ahead of the game. In many industries, including travel, insurance, telecoms, music, and even automobiles, we are rapidly closing in on equalization of predictive capabilities across competitors, so there is little lasting competitive advantage to be gained from predicting the next purchase.

To build lasting advantage, marketing programs that leverage big data need to turn to more strategic questions about longer term customer stickiness, loyalty, and relationships. The questions that need to be asked of big data are not just what will trigger the next purchase, but what will get this customer to remain loyal; not just what price the customer is willing pay for the next transaction, but what will be the customer’s life-time value; and not just what will get customers to switch in from a competitor, but what will prevent them from switching out when a competitor offers a better price.

Read Also:
The Surprising Truth about Big Data

The answers to these more strategic questions reside in using big data differently. Rather than only asking how we can use data to better target customers, we need to ask how big data creates value for customers. That is, we need to shift from asking what big data can do for us, to what it can do for customers.

Big data can help design information to augment products and services, and create entirely new ones. Simple examples include recommendation engines that create value for customers by reducing their search and evaluation costs, as Amazon and Netflix do; or augmenting commodity utilities with customized usage information, as Opower does.

 



HR & Workforce Analytics Summit 2017 San Francisco

19
Jun
2017
HR & Workforce Analytics Summit 2017 San Francisco

$200 off with code DATA200

Read Also:
Turn Data Into Insight Into Action: Six Rules for Nailing Digital Analytics

M.I.E. SUMMIT BERLIN 2017

20
Jun
2017
M.I.E. SUMMIT BERLIN 2017

15% off with code 7databe

Read Also:
Why Forrester Considers Adobe a Leader in Customer Analytics
Read Also:
Welcome to the post-cloud future

Sentiment Analysis Symposium

27
Jun
2017
Sentiment Analysis Symposium

15% off with code 7WDATA

Read Also:
Techniques for Aligning Social Content With Analytics

Data Analytics and Behavioural Science Applied to Retail and Consumer Markets

28
Jun
2017
Data Analytics and Behavioural Science Applied to Retail and Consumer Markets

15% off with code 7WDATA

Read Also:
IKEA's Data-Driven Campaign Reintroduces the Brand to U.S. Consumers

AI, Machine Learning and Sentiment Analysis Applied to Finance

28
Jun
2017
AI, Machine Learning and Sentiment Analysis Applied to Finance

15% off with code 7WDATA

Read Also:
IKEA's Data-Driven Campaign Reintroduces the Brand to U.S. Consumers

Leave a Reply

Your email address will not be published. Required fields are marked *