tumblr_inline_o435lpHshZ1u37g00_500

10 Deep Learning Terms Explained in Simple English

10 Deep Learning Terms Explained in Simple English

Deep Learning is a new area of Machine Learning research that has been gaining significant media interest owing to the role it is playing in artificial intelligence applications like image recognition, self-driving cars and most recently the AlphaGo vs. Lee Sedol matches. Recently, Deep Learning techniques have become popular in solving traditional Natural Language Processing problems like Sentiment Analysis.

For those of you that are new to the topic of Deep Learning, we have put together a list of ten common terms and concepts explained in simple English, which will hopefully make them a bit easier to understand. We’ve done the same in the past for Machine Learning and NLP terms, which you might also find interesting.

In the human brain, a neuron is a cell that processes and transmits information. A perceptron can be considered as a super-simplified version of a biological neuron.

A perceptron will take several inputs and weigh them up to produce a single output. Each input is weighted according to its importance in the output decision.

Read Also:
Map Design Gone Wrong Do People Even Care Anymore?

Artificial Neural Networks (ANN) are models influenced by biological neural networks such as the central nervous systems of living creatures and most distinctly, the brain.

ANN’s are processing devices, such as algorithms or physical hardware, and are loosely modeled on the cerebral cortex of mammals, albeit on a considerably smaller scale.

Let’s call them a simplified computational model of the human brain.

A neural network learns by training, using an algorithm called backpropagation. To train a neural network it is first given an input which produces an output. The first step is to teach the neural network what the correct, or ideal, output should have been for that input. The ANN can then take this ideal output and begin adapting the weights to yield an enhanced, more precise output (based on how much they contributed to the overall prediction) the next time it receives a similar input.

This process is repeated many many times until the margin of error between the input and the ideal output is considered acceptable.

Read Also:
What artificial intelligence will look like in 2030

A convolutional neural network (CNN) can be considered as a neural network that utilizes numerous identical replicas of the same neuron. The benefit of this is that it enables a network to learn a neuron once and use it in numerous places, simplifying the model learning process and thus reducing error. This has made CNNs particularly useful in the area of object recognition and image tagging.

CNNs learn more and more abstract representations of the input with each convolution. In the case of object recognition, a CNN might start with raw pixel data, then learn highly discriminative features such as edges, followed by basic shapes, complex shapes, patterns and textures.

Recurrent Neural Networks (RNN) make use of sequential information.;

 



Chief Analytics Officer Europe

25
Apr
2017
Chief Analytics Officer Europe

15% off with code 7WDCAO17

Read Also:
Coursera Launches Data Analysis Specialization Track

Chief Analytics Officer Spring 2017

2
May
2017
Chief Analytics Officer Spring 2017

15% off with code MP15

Read Also:
What is Big Data analytics? A guide
Read Also:
From Farming To Big Data: The Amazing Story of John Deere

Big Data and Analytics for Healthcare Philadelphia

17
May
2017
Big Data and Analytics for Healthcare Philadelphia

$200 off with code DATA200

Read Also:
Map Design Gone Wrong Do People Even Care Anymore?

SMX London

23
May
2017
SMX London

10% off with code 7WDATASMX

Read Also:
This software does in seconds what took lawyers 360,000 hours

Data Science Congress 2017

5
Jun
2017
Data Science Congress 2017

20% off with code 7wdata_DSC2017

Read Also:
Turbo Charge Enterprise Analytics with Big Data

Leave a Reply

Your email address will not be published. Required fields are marked *